
127

JOURNAL OF THE EXPERIMENTAL ANALYSIS OF BEHAVIOR 2002, 78, 127–160 NUMBER 2 (SEPTEMBER)

MOLECULAR ANALYSES OF THE PRINCIPAL
COMPONENTS OF RESPONSE STRENGTH

PETER R. KILLEEN, SCOTT S. HALL,
MARK P. REILLY, AND LAUREN C. KETTLE

ARIZONA STATE UNIVERSITY

Killeen and Hall (2001) showed that a common factor called strength underlies the key dependent
variables of response probability, latency, and rate, and that overall response rate is a good predictor
of strength. In a search for the mechanisms that underlie those correlations, this article shows that
(a) the probability of responding on a trial is a two-state Markov process; (b) latency and rate of
responding can be described in terms of the probability and period of stochastic machines called
clocked Bernoulli modules; and (c) one such machine, the refractory Poisson process, provides a func-
tional relation between the probability of observing a response during any epoch and the rate of
responding. This relation is one of proportionality at low rates and curvilinearity at higher rates.
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Skinner often asserted that rate was a mea-
sure of the probability of responding, and
that ‘‘the task of an experimental analysis is
to discover all the variables of which proba-
bility of response is a function’’ (Skinner,
1988, p. 214). This article takes up that task.
Its strategy is not to seek new independent
variables but to understand the relation be-
tween probability of response and the other
dependent variables in our field: local rates,
global rates, and latencies. It continues the
analyses of response strength initiated by Kil-
leen and Hall (2001). In their experiments,
the probability, latency, and run rates of pi-
geons’ pecks were measured in trials proce-
dures. Principal components analyses identi-
fied a factor called strength that was common
to the three dependent variables. Overall re-
sponse rate, a composite of these three com-
ponents, was highly correlated with the com-
mon factor. By what mechanism might a
common state give rise to correlations among
these dependent variables? That is the ques-
tion pursued in this paper. The tactic is to
develop appropriate statistical models and
machines that exemplify those models. Ma-
chines are constructed that will generate the
probability of responding during a trial (a
two-state Markov model), the latency of the
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first response (various series-latency mecha-
nisms), and response rate (a periodic process
with noise). This is done because the ma-
chines epitomize the aspects of behavior cap-
tured by the equations, and it is easier to un-
derstand the machines than the equations by
themselves. The flow of argument is data →
probability models → machines that exem-
plify those models → probability as a funda-
mental variable → response rate as its mea-
sure. The unifying construct is probability.

Johnson and Morris (1987) reviewed the
use of probability in the experimental analysis
of behavior, and agreed with Dews that ‘‘De-
spite numerous attempts, rate of responding
has yet to be converted in a general and rig-
orous way into a probability’’ (Dews, 1981, p.
116). Johnson and Morris suggested replac-
ing probability with the more general term pro-
pensity. Propensity is essentially the way that
Skinner, and we, use the term strength: a state
of the organism that is revealed in certain
measures (e.g., rate, probability, latency, and
force of responding) given certain contexts
(e.g., deprivation levels, experimental con-
text, history of reinforcement). Propensity was
an appropriately vague term given our state
of knowledge 20 years ago. The goal of this
paper is to strengthen the analyses of that key
variable rather than weaken its name: Rate of
responding will be converted into probability
in a general and rigorous way. Johnson and
Morris’ propensity still has a role—not as a
kind of fuzzy probability, but as a generic ref-
erence to a moderate level of response
strength. In its turn, strength is seen as a state
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variable that gives rise to the key dependent
variables through the mechanisms described
here.

EXPERIMENTS FROM
KILLEEN AND HALL (2001)

The methods involved in these experi-
ments are summarized; see the original for
additional details.

General Method

Four adult homing pigeons (Columba livia)
were maintained at 80% of their free-feeding
weights. A standard BRS/LVE operant cham-
ber had a centrally located Gerbrands re-
sponse key, background illumination from a
houselight, and ambient noise from a speak-
er.

Sessions ended after 200 trials. Prior to
each trial the chamber was dark for 9 s, fol-
lowed by a 1-s warning stimulus (either illu-
mination of red side-keylights or flickering of
houselight). Trials began with the illumina-
tion of the response key and ended after 10
s, or after reinforcement (3.2-s access to milo
grain) if that occurred first.

Variable-interval (VI) schedules and extinction.
After pretraining, reinforcers were available
according to one of four constant-probability
VI schedules: VI 120 s, VI 240 s, VI 480 s, and
VI 960 s. Blocks of 6 to 14 VI sessions alter-
nated with blocks of four to six sessions of
extinction. In extinction the hopper was emp-
ty. This was reported as Phase 2 of Experi-
ment 1 in Killeen and Hall (2001).

Variable-ratio (VR) schedules, satiation, and ex-
tinction. Experimental sessions were conduct-
ed on alternate days, allowing the pigeons to
satiate during the course of the session and
return to running weights of approximately
84% ad libitum for the next session. Sessions
lasted for 2 hr, and consisted of up to 360
trials. Trials were scheduled to last for 10 s,
during which responses were reinforced on a
VR schedule with a probability of 1/20, but
were terminated after reinforcement. This
condition lasted for 10 sessions, followed by
one session of extinction. These 11 sessions
were repeated three times and reported as
Experiment 2 in Killeen and Hall (2001).

Fixed-interval (FI) schedules. Sessions lasted
for 2 hr and were conducted on alternate
days. The pigeons were trained on an FI 20-

s schedule that included a limited hold of 10
s: The first response to the left key after 20 s
had elapsed from trial onset was reinforced;
if no response had occurred by 30 s from trial
onset, the trial ended. This condition lasted
for 15 sessions, followed by a session of ex-
tinction. The pigeons were retrained on FI 20
s for 10 sessions. In this condition trials con-
tinued until a reinforcer was collected, or the
session terminated after 120 min. A final ex-
tinction session was conducted. This was re-
ported as Experiment 3. In all cases an inter-
trial interval of 10 s followed trial termination.

Analyses. All analyses were based on the last
five sessions of each condition. The probabil-
ity of responding on a trial (p) was calculated
by dividing the number of trials during which
at least one response occurred by the total
number of trials in a session. The mean la-
tency (L) of the first response was calculated
by summing the total time that elapsed be-
fore the first response and dividing this by the
number of trials. Trials without a response
were omitted from the latency analysis. These
are therefore latencies given that a response
occurred; latencies long enough to exceed
trial duration were not recognized. Latencies
were converted into a complementary mea-
sure, the proportion of the trial duration
spent responding, 1 2 L/T, where L is the
latency and T the trial duration (usually 10
s). This transformation gave changes in all of
the dependent variables the same directional
change with changes in response strength.
The running rate (b) was calculated by taking
the reciprocal of the average of interresponse
times (IRTs) after the first response. The
overall rate (B) was calculated by summing
the total number of responses made over a
session and dividing by the total time avail-
able for responding.

Summary Results

Figure 1 shows the key variables in the dif-
ferent experiments, averaged over pigeons
and replications. They vary systematically in
the expected directions with changes in the
rate of reinforcement, satiation, and extinc-
tion. The measures shown in Figure 1 are
conditional: the probability of a response giv-
en a trial; proportion of a trial spent respond-
ing given that a response occurred on that
trial; rate of responding given that a response
had occurred; response rate given that the
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Fig. 1. Changes in the principal measures of the response averaged across 4 pigeons in Experiments 1 through
3 of Killeen and Hall (2001). The top row gives the probability of responding on any trial (p); the second gives the
proportion of a trial in the response state (the complement of the latency, relative to the average trial duration: 1 2
L/T); the third gives the running rate (rate after the first response: b); the fourth gives overall response rate (total
number of responses divided by the number of seconds available for responding: B). The first column shows baseline
followed by successive sessions of extinction on VI schedules whose means are given in the legend. The second
column shows satiation on VR 20; the third column shows multiple extinctions after that schedule. The fourth column
shows performance on FI 20 s and FI 20 s with a 10-s limited hold over the course of satiation and extinction.
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key was lit. Killeen and Hall (2001) showed
that this ensemble of measures, when dis-
turbed with varying rates of reinforcement,
contingency of reinforcement, satiation, and
extinction, were sufficiently well correlated
(median r 5 0.92) that it was economical to
posit an underlying state variable—strength.
This variable summarizes the effects of these
operations on the organism. Being a com-
posite measure, it is more robust and infor-
mative than any one of the measures by itself.
Confirmatory factor analyses validated this
claim and showed furthermore that overall
response rate was an excellent predictor of
that common factor of strength, having a fac-
tor loading of 1.0 on it for the group data.
The probability of responding on a trial had
a loading of 0.98, almost as good.

Whereas the principal components analy-
ses underscored the functional relation
among dependent variables as mediated by
strength, it did not provide a molecular anal-
ysis of the workings of the dependent vari-
ables. That is provided here. In particular, it
will be shown that even though overall re-
sponse rate is often the best measure of
strength, the best way to think about strength
is as a probability—the probability of making
a response conditional on the onset of a stim-
ulus, or on the passage of time from that stim-
ulus, or on the passage of time since the last
response. Those probabilities are realized in
a series of machines. This treatment permits
a definitive statement of the relation between
response rate and probability in the context
of well-defined probability machines.

STOCHASTIC MODELS
OF BEHAVIOR

Response Rate

Response rate is the number of responses
in an epoch divided by the duration of that
epoch. It is also a parameter of a distribution:
It is the reciprocal of the average IRT. The
first step of analysis is to inspect the distri-
bution of the things averaged. Distributions
require categorizations (bins), so that the fre-
quency of different categories may be dis-
played. Figure 2 shows the distribution of
IRTs at various ‘‘grains’’—different sized cat-
egories of width D seconds, from the VI
schedules reported as Phase 2 of Experiment

1 in Killeen and Hall (2001). The categories
are placed above their midpoints, at abscissae
of 0.5 D, 1.5 D, 2.5 D, and so on. Multiplying
these times by the frequencies displayed
above them and summing gives the average
IRT, the reciprocal of the average rate. All
IRTs within a range of D seconds are consid-
ered elements of the same category. To fur-
ther describe the distributions requires mod-
els, the simplest of which is the geometric
progression.

Geometric distributions. A very coarse display
of IRTs is shown in the top row of Figure 2,
where D 5 1,000 ms. The data are from the
last five baseline sessions of the VI 960-s con-
dition. The observed decreases in the relative
frequencies of emitting IRTs as a function of
their length may be succinctly described as
geometric. Geometric distributions occur when
there is some probability, p, of a response at
each unit of time (each bin on the x axis). A
response will fall into the first bin with prob-
ability p, and miss it with probability 1 2 p. If
it misses the first, it will fall into the second
bin with probability p. The chance of both
events happening is p(1 2 p). The chance of
missing the first two bins and falling into the
third is p(1 2 p)(1 2 p). The chance of miss-
ing the first n 2 1 bins and falling into the
nth is p(1 2 p)n21. This is a geometric distri-
bution.

The mean of a geometric distribution is
D/p 2 D/2. The subtrahend D/2 situates the
bins over their midpoints. Geometric densi-
ties account for more than 99.9% of the var-
iance in the frequencies of the four coarse-
grained IRT distributions shown in the top
row of Figure 2. Geometric distributions are
simple because the probability of an event in
any epoch, given that the organism has got-
ten there, is the same for all epochs: It is p.
The conditional probability of a response oc-
curring in bin n, given that it had not yet
occurred by bin n 2 1, is p, which is true for
any value of n. This ‘‘memoryless’’ character
is unique to the geometric distribution and
its continuous analogue, the exponential
density. It indicates that knowledge of the
time since the last response gives us no ad-
vantage in predicting the occurrence of the
next response: To the extent geometric or ex-
ponential functions describe the distribu-
tions, time since the last response is not a
causal variable. Probabilities conditional on
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Fig. 2. Relative frequency distributions of interresponse times (IRTs) during the VI 960-s baseline shown in the
first column of Figure 1. In the top row data are aggregated in 1-s bins (very coarse grain); in the second row, in
500-ms bins (coarse grain); in the third, 200-ms bins (medium grain); in the fourth, 100-ms bins (fine grain); and
in the bottom row, 50-ms bins (very fine grain).

which temporal bin is under consideration
are equal to base probabilities and may be
ignored in accounts of behavior. Response
rate (or its reciprocal, the average IRT, given

by the mean of the distribution) constitutes
a complete description of those distributions,
in that it completely specifies the single pa-
rameter in the geometric distribution.
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Exponential distributions. As the bin size ap-
proaches 0, the geometric density approaches
the exponential, le2lt. The parameter l is the
instantaneous rate of emission of responses.
It has the dimension of the inverse of the unit
in which t is measured, typically s21. An ex-
ponential distribution may be superimposed
on the geometric by evaluating the exponen-
tial at the midpoint of each bin and multiply-
ing that density times the width of the bin
(D). The visual approximation of the geo-
metric to the exponential improves as D de-
creases, down to the point at which they are
equivalent. To get the geometric probability
p from the exponential, integrate the latter
over the bin duration: p 5 1 2 e2lD. The in-
verse relation between the rate of the expo-
nential and the probability of the geometric
is l 5 2ln(1 2 p)/D. An animal averaging
one response per second has a probability of
.63 (i.e., 1 2 e21) of making a response dur-
ing the first second after a previous response.
The exponential provides a more general de-
scription than the geometric because it is not
limited to predictions about a fixed category
width, but, once l is determined, can predict
the probability of a response in a bin of any
width.

Researchers content with the description at
a level consistent with the geometric distri-
bution already have in hand a map between
rate and probability. The instantaneous rate
of responses, l, is the key parameter of the
exponential; the average IRT is 1/l. The map
between probability and that rate is p 5 1 2
e2lD; its inverse is l 5 2ln(1 2 p)/D. Estes
(1950) proposed this relation between rate
and probability (cf. Bower, 1994), but it was
not further developed.

The best (i.e., unbiased, maximum likeli-
hood) estimator of the instantaneous rate, l,
is the reciprocal of the average IRT (Evans,
Hastings, & Peacock, 1993); that is, the aver-
age response rate. Therefore, the best way to
calculate response rates is in the traditional
manner: Sum IRTs and divide by n. To the
extent that the shape of the IRT distributions
shown in the top row of Figure 2 is main-
tained at finer levels of analysis, the exponen-
tial distribution gives the map between prob-
ability and rate, and the average IRT provides
the best measure of it.

As the categories become more refined
and more details become visible, however, the

simple geometric description no longer suf-
fices. At the next level in Figure 2—still a rel-
atively coarse grain—it can be seen that short
IRTs are not the most common for Pigeon 50,
as required for a geometric process.

General Models for the
Distribution of IRTs

Mathematical models are most satisfying
when they act as the cords of an analogy, ty-
ing an abstruse process such as the strength-
ening or patterning of an operant to visual-
izable models in an explicit and testable
manner (Miller, 1984). Machines that gener-
ate data consistent with the mathematical
models of behavior provide a more accessi-
ble, intuitive grasp of possible mechanisms
that underlie the response patterns. As non-
biological devices that demonstrate behavior
similar to the biological systems we seek to
understand, the machines constitute suffi-
cient descriptions. They are not necessary de-
scriptions because other machines can be fab-
ricated that generate comparable output.
The same is true for any scientific theory. A
model that provides a sufficient description is
a step forward. That step may encourage oth-
er steps. Once competing descriptions are
available, considerations such as parsimony
and elegance help to select among them.

The cyclic machine. Consider first a reflex cir-
cuit that generates perfectly periodic respons-
es, ones that might issue from pacemakers
such as a pendulum or a rotating wheel with
a pawl that activates a switch with each revo-
lution. Such machines generate the simplest
IRT distributions, a single category at the
mean IRT having a probability of 1 and a
width approaching 0. The model has one pa-
rameter, d, the period of cycle. Response rate
is 1/d with zero variance.

This machine may be simulated on a com-
puter using the flowchart shown at the top of
Figure 3. The machine starts by setting an
elapsed time variable t to 0. It then loops un-
til the elapsed time equals d, whereupon it
emits a response, resets the timer to 0, and
then waits to the end of the next epoch to
make another response.

The stochastic cyclic machine: Very coarse grain.
The next level of detail, exemplified by the
top row of Figure 2, shows a skewed distri-
bution of IRTs. A pacemaker that misses its
strike with probability 1 2 p generates such
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Fig. 3. The flowcharts for two machines that generate
exemplary IRT distributions. Top: a machine that emits
a response every d seconds. Bottom: a machine that emits
a response every d seconds with probability p. It generates
geometric distributions indistinguishable from those in
the top row of Figure 2.

geometric distributions. If the pacemaker’s
period is fast relative to the bin size, the con-
tinuous analogue of the geometric distribu-
tion—the exponential with rate l—provides
a general description. If nothing other than
the mean response rate (l) is known, the
most random distribution, and therefore the
one most parsimonious of prior assumptions,
is such an exponential (Kapur, 1989).

This machine may be simulated on a com-
puter using the flowchart at the bottom of
Figure 3. The machine starts by setting an in-
dicator variable X and elapsed time t to 0. It
then loops until the elapsed time equals d,
whereupon it sets the indicator to 1 with
probability p. On those epochs when X is set
to 1, the machine emits a response, reinitial-
izes the variables, and then waits for the end
of the next epoch. If d is relatively large, the
result is a geometric distribution, such as
those shown in the top row of Figure 2. Let-
ting the period d become very small while the
ratio p/d remains constant at l morphs the
geometric distribution into an exponential
with rate parameter l.

The stochastic cyclic machine: Coarse grain. A
finer grained analysis of IRT frequencies (the
second row in Figure 2) shows distributions
that may increase before decreasing. This is
consistent with real cyclic machines having
periods d . 0, as no pecks are possible before
the pacemaker has recycled, causing dead, or
refractory, times of d seconds after each re-
sponse, and yielding a maximum rate of 1/d.
All organisms have such ceilings on their re-
sponse rates. As the bin size D decreases, the
probability of observing responses in the first
bin will decrease with it, until D , d, where
it must fall to 0. As bin size goes to 0, the
geometric morphs into an exponential distri-
bution with an origin at d rather than at 0.
This refractory Poisson model describes many
response distributions. Its implications are
consistent with other models of response
rates under ceiling constraints (Killeen, 1982;
Killeen & Bizo, 1998). It predicts a hyperbolic
relation between responses that are evoked
by reinforcement at a rate of l and the rate,
b, of those that are able to be emitted and
measured: b 5 l/(1 1 ld) (Bharucha-Reid,
1960). This may be understood by writing the
average IRT, 1/b, as the time between re-
sponses plus the duration of a response: 1/b
5 1/l 1 d. Taking reciprocals yields the
above equation.

A special case holds when l is proportional
to the rate of reinforcement, R, relative to the
period of the response generator, d. Then l
5 aR/d, and it follows that b 5 kR/(R 1 1/a),
with k 5 1/d. This is Herrnstein’s hyperbola
(de Villiers & Herrnstein, 1976; Herrnstein,
1974). The parameter a measures the moti-
vation of the organism (Killeen, 1994). Thus
molar measures and theories are closely re-
lated to these descriptive models of IRT dis-
tributions.

The refractory Poisson process provides an
almost perfect fit to these and other data
(e.g., Reynolds & Catania, 1961) when the
bin size is no finer than D ø 1/2 s. Depend-
ing on how long the refractory period is rel-
ative to the bin size, one or more of the lead-
ing bins may be empty. The first bin to
contain a response will have its leading edge
clipped by the end of the refractory period,
so it will generally show lower relative fre-
quencies of responding than the second oc-
cupied bin. This effect is demonstrated below
(in Figures 7 and 10).
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As the bin size decreases relative to the pe-
riod of the cycle, the stochastic cyclic machine
may generate histograms with periodicities.
The distributions will have higher-than-expo-
nential probabilities at multiples of the peri-
od and lower-than-exponential probabilities
between periods. These are visible in the me-
dium- and fine-grained IRT distributions
(middle and lower rows of Figure 2), and re-
quire the next class of models.

The stochastic cyclic machine with noise in out-
put. Although the shifted origin of the above
machines allows refractory periods between
responses, it cannot account for relative fre-
quencies of responding that increase for
more than one bin before decreasing, as is
the case for all but Pigeon 95 in the middle
row of Figure 2. Nor can those machines ac-
count for more than two bins that fall be-
tween periodicities and have frequencies
greater than zero. The stochastic cyclic ma-
chine is too precise for these things to hap-
pen; timing must be imperfect, that is, there
must be noise in the model. Noise will permit
varying degrees of smoothing between the
discrete bins of the geometric process, caus-
ing it to approximate, to varying degrees, the
data. There are two obvious ways to introduce
noise.

The first way to introduce noise, developed
by McGill (1962, 1963) and Wing and Kris-
tofferson (1973), maintains a perfect pace-
maker of period d, but adds random delays
between the start of action and the registra-
tion of a response. It is as though the pecking
reflex is perfectly periodic, but a random var-
iable intrudes between the initiation of a
peck and its execution. This could be as sim-
ple as variance in the distance of the head
from the key from one peck to the next. The
predicted distributions of IRTs have a quick
exponential ramp up to a maximum at the
period of the pacemaker and a slower expo-
nential decrease thereafter. This model pro-
vides an excellent fit at the first two levels of
analysis. It makes two predictions that are not
supported, however: With a constant-speed
pacemaker, when one response takes longer
than average, the next response should follow
closer on its heels than average. Conversely,
a short IRT should be followed by a longer
IRT. This may be easily tested by correlating
all IRTs with those that immediately follow
(an autocorrelation Lag 1). The McGill mod-

el predicts those autocorrelations to be neg-
ative. For the 4 pigeons in the VI 960-s
condition of the VI experiment, the autocor-
relations were r 5 2.01, .20, .15, and .42; all
but the first are significantly greater than 0.
The McGill model is therefore not isomor-
phic with these data. Neither is the simple
exponential, for which none of the autocor-
relations should be significantly different
from zero. The McGill model generalizes the
simple exponential in the wrong direction. A
model developed by Shull, Gaynor, and
Grimes (2001) generalizes it in the correct
direction, as we shall see next.

Response bouts. Another way of testing the
McGill (1962, 1963) and exponential models
is in terms of conditional probabilities. If ev-
ery IRT less than the median is called short
and the others are long, what is the probabil-
ity that a short response will occur given that
one had just occurred p(shortzshort)? For a
random process this should be .50. For the 4
pigeons it was .58, .56, .61, and .73. These are
significantly greater than .50. There is thus a
tendency for the pigeons to continue in a
high response-rate mode given that they are
in that mode. The pigeons engage in bouts
of responding, and being in a bout (i.e., emit-
ting a short IRT) is a better-than-chance pre-
dictor that it will stay in that mode and emit
another short IRT. This conceptualization of
response rates as a mixture of distributions
was developed and validated by Shull et al.
(2001), and will be represented as a proba-
bility machine after a crucial subcomponent
is developed.

The clocked Bernoulli module (CBM). In Fig-
ure 4 the stochastic cyclic machine is gener-
alized so that it may be used as a module in
constructing other machines. It is a slightly
revised version of the stochastic cyclic ma-
chine shown in Figure 3: It utilizes generic
parameters, t in place of d and p in place of
p, that are not associated with any particular
behavioral process. Rather than respond and
recycle, it sets a flag (the state indicator goes
from 0 to 1) and exits. Because of the general
utility of such a module, it is given a name:
clocked Bernoulli module (CBM). A Bernoulli
process is one that metaphorically tosses a
coin with a probability p of heads, and exits
when it obtains a head. It is the basis of many
distributions, such as the binomial and its off-
spring, the normal, Poisson, and exponential.
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Fig. 4. A mechanism that is used in many of the prob-
ability machines, the clocked Bernoulli module (CBM) is
a generalization of the machine shown in the bottom of
Figure 3. The CBM essentially flips a coin every t sec-
onds. The coin has a probability p of landing heads; if it
does so, it sets the state variable X to 1 and exits. The
CBM is represented by the icon at the top of the figure.

Fig. 5. Top: a Markov model for responding consist-
ing of bouts of target responses interspersed with non-
responses. Bottom: the flowchart for the corresponding
probability machine. The component modules are de-
scribed in Figure 4.

The CBM is clocked because it adds a tem-
poral element t that must elapse between
tosses. Such a temporal element is necessary
to use Markov processes as models of tem-
poral phenomena. The CBM is essentially a
probabilistic pacemaker of period t. t defines
the interval over which the probability is mea-
sured. If t is small it need not be assigned a
particular value, because it is the ratio of p/t
that is then measured as a mean rate of out-
put (l), and that mean is invariant over pro-
portional changes in p and t.

Figure 5 shows the Markov model used by
Shull et al. (2001) to describe the responding
of rats under a variety of schedules of rein-
forcement and motivational conditions. It is
similar to one used by Heyman (1988) for
responding maintained by VI schedules.
Shull et al. found that motivational opera-
tions primarily affected the probability of ini-
tiating a response bout, p(V), whereas manip-
ulating the contingencies of reinforcement
affected the probability of ending a bout,
p(D). These two operations correspond to
arousal and coupling manipulations in the
mathematical principles of reinforcement
(Killeen & Bizo, 1996, 1998). The probability
machine associated with the Shull et al. mod-
el is shown in the bottom of Figure 5, with
reinforcement added to their basic model.
The IRT machine is a simple CBM with prob-
ability parameter p 5 p(R) 5 b. The temporal
parameter is undefined and therefore takes
the unit in which time is measured (for Shull

et al., this was 1 s). The hiatus from bouts
(the ‘‘disengaged’’ state) is also a CBM, with
parameters p 5 p(V) and t 5 1 s.

Finer Analyses

For both the McGill model and the geo-
metric-exponential model, frequencies
should be monotonically decreasing for all
IRTs longer than the period of the pacemak-
er. The deeper levels of analysis in Figure 2
show that this is not the case: There is resid-
ual periodicity in the IRTs, as shown by
Blough (1963) and others (e.g., Gentry,
Weiss, & Laties, 1983; Palya, 1991, 1992; Ray
& McGill, 1964). This periodicity is more
clearly visible in Figure 6.

The stochastic cyclic machine with noise in the
period. The periodicity in the finer grained
distributions is captured by another model
that adds noise, not to the motor latency but
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Fig. 7. Top: the shifted exponential fit to the fine-
grained distribution of Pigeon 95. Some residual peri-
odicity is visible. Bottom: the Palya distribution fit to the
fine-grained distribution of Pigeon 93, with parameters
as shown and d0 5 0 s. The function is a mixture of
Gaussian distributions with first mode at d 1 d0, second
at 2d 1 d0, and third at 3d 1 d0; with variances of s2,
2s2, and 3s2; and with areas of p, p(1 2 p), and p(1 2
p)2. The return plots and IRT machines corresponding
to these graphs are shown in Figures 6 and 8.

←

Fig. 6. The number of IRTs of a duration given by
the y axis, following an IRT of a duration given by the x
axis. Data for these return plots are from the last five
sessions of the VI 960-s baseline condition of Killeen and
Hall (2001).

to the period of the pacemaker. It is as if the
wheel of the pacemaker is not perfect, but
wobbles on its axis, generating a ‘‘smear’’
around the periodic bins. This is most obvi-
ous for the data from Pigeon 93 from Killeen
and Hall (2001) redrawn in the bottom of
Figure 7. Call the standard deviation of the
fundamental period s. When a peck is
missed, it is as though it occurred ‘‘off key’’
(Bachrach, 1966). If a peck occurs at the next
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opportunity, its average IRT will be 2t, and its
standard deviation will be Ï2s, and those
around subsequent increments, located at 3t,
4t, nt, will increase as the square root of n.
This means that the banding will be less dis-
tinct around longer IRTs, as seen in Figure 6.
This machine is identical to the model of Pal-
ya (1992). Because it is an important and ac-
curate model, we call such a probabilistic cy-
clic machine with variability in its period a
Palya machine, and describe it more fully be-
low.

The simplicity of the two-parameter refrac-
tory Poisson process makes it the preferred
model whenever the periodic ripples in the
distributions are minimal (e.g., in the top
panels of Figures 7 and 10). Just as a black-
and-white sketch is sometimes preferred over
a full-color portrait, a scientist may choose a
more economical description, such as two-pa-
rameter distributions, knowing that all de-
scriptions are, in any case, approximations.

Two-state Palya machines. At the fine and
very fine levels of analysis (Figure 2), another
feature is manifest in the data that is absent
from the above models. The first mode in the
data for all pigeons except 95 is smaller than
the second mode, a feature observed by other
investigators (e.g., Mazur & Hyslop, 1982;
Rau, 1997). Various accounts may be given of
this feature: Perhaps it is caused by a peculiar
pecking topography, such as an opening of
the beak on the completion of one response
to cause a quick second response. Ploog and
Zeigler (1996) found that pigeons made two
to four times as many beak-opening (gaping)
movements as were recorded as key pecks
(their Figure 1). If some pigeons make these
closer to the key than others, this would ac-
count for the presence of early minor modes
in their distributions. We have not seen this
feature in the IRT distributions of rats (see
below).

Multistate Palya machines such as that in-
voked for the data of Shull et al. (2001) could
accommodate minor early modes and pro-
vide a more accurate description of the char-
acter of response rates, including the auto-
correlational data. Complete descriptions
are, of course, more prolix than cursory ones.

The Structural Similarity of the Models

The parameters of these increasingly fine
descriptions are closely related, and are uni-

fied by the generic IRT machine diagrammed
in Figure 8.

The IRT for the cyclic machine is d, and
thus the average running response rate is 1/d
with variance 0. It may be characterized in
Figure 6 by a point at x 5 d s and y 5 d s. In
Figure 8 the first CBM is taken out of play by
setting the probability of quitting, q, to 0. The
second CBM generates a deterministic period
of d seconds. This machine has one free pa-
rameter, d.

The cyclic machine becomes a stochastic
(probabilistic) cyclic machine if p , 1. The
first CBM in Figure 8 is deleted by setting q
to 0, and the second generates a geometric
distribution of IRTs. The mean number of cy-
cles required for a response is 1/p, each of
duration d. The mean IRT is d/p. The aver-
age response rate is the reciprocal of the av-
erage IRT: p/d. As p approaches 1.0, these
statistics approach those of the simple cyclic
machine. This is a strongly periodic machine.
It may be characterized in Figure 6 by a lat-
tice, most dense at x 5 d s and y 5 d s and
thinning at multiples of these values accord-
ing to p(1 2 p)n21. This machine has two free
parameters, d and p.

As their period approaches 0, stochastic cy-
clic machines function as a Poisson machine,
which generates a simpler exponential distri-
bution of IRTs. The Poisson machine has a
very short period t and a probability of p 5
lt, where l is the rate of initiation of respons-
es during the epoch t. The ratio of p/t de-
termines the single free parameter of this sys-
tem, its rate l.

The refractory Poisson machine generates
an exponential distribution shifted by d from
the origin. The shift corresponds to the time
required to make a response, a time during
which other responses are impossible—a re-
fractory period. The average IRT is the mean
of the exponential distribution from the sec-
ond CBM (1/l) plus the refractory period:
(1/l 1 d). The average response rate is the
reciprocal of this average IRT, l/(1 1 ld),
which approaches the rate of initiation of re-
sponses l as the dead time d goes to 0. This
model suffices to describe the IRTs of rats’
lever presses; it suffices for pigeons except at
fine-grained levels of analyses, for which a
Palya machine is more accurate. It may be
characterized in Figure 6 by a gap to x 5 d s
and y 5 d s, and exponentially thinning
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Fig. 8. IRT machines based on two sequenced CBMs. With appropriate parameters, these clocked Bernoulli
processes emulate all of the models of IRTs developed in this paper. The rate of leaving each CBM is l 5 p/t. All
are exponential in the limit as t → 0, in which case the single parameter l characterizes the module. For the first
three machines, only the second CBM is operative. Cyclic machines dwell in the second state for d seconds and then
respond with a probability of 1. Geometric machines dwell in the second state for d seconds before leaving with
probability p. Exponential distributions are generated when t → 0 with the rate of exit constant at l 5 p/t. The
shifted exponential machine adds a fixed dead time d, corresponding to the minimal response time. The Palya
machine is like the shifted exponential, with an offset of d0 and a variable period for the second CBM. When animals
engage in bouts of responding and hiatus, t1 gives the time away from the response state before there is an oppor-
tunity to revisit it. If p1 5 1, the hiatus is of fixed duration. If p1 , 1, it is a geometric-exponential hiatus. After each
response the animal begins a hiatus with probability q, or stays in the bout with a probability of 1 2 q. While in the
bout state, responses are exponentially distributed in the case t2 → 0.
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marks above these values, as is approximately
the case for Pigeon 95. It permits a direct
bridge to contemporary theories of molar re-
sponse rate. It is implemented in Figure 8 by
bringing the second CBM into play after a
delay of d s in the first CBM, and is otherwise
the same as the exponential arrangement. It
has two free parameters, d and l.

The Palya machine adds variance to the pe-
riod of the stochastic cyclic machine. It was
defined and shown to provide a good descrip-
tion of pigeon IRTs by Palya (1992). Because
the variance is symmetric around multiples of
the period, the mean IRT is simply that of the
geometric distribution: d/p. The difference
between the shifted exponential and the Pal-
ya machines is that the former predicts a con-
stant marginal probability of a response any
time after the refractory period d, whereas
the latter predicts periodicity in responding.
As the variance of the pacemaker increases,
so does the resemblance of the Palya model
to the exponential: Variance smoothes the
natural periodicity of the cyclic machine. This
is manifest in Figure 7 for Pigeon 95, whose
data are more parsimoniously represented by
the shifted exponential model than by a Palya
machine. The Palya machine may be charac-
terized in Figure 6 by a blurred lattice, dense
at x 5 d s and y 5 d s and thinning and blend-
ing at multiples of these values. It is charted
in Figure 8. The mean period of the second
CBM, d, probably corresponds to cyclic pecks
and off-key pecks. This period has a standard
deviation of s. In the first CBM, d0 corre-
sponds to the extra time necessary to make a
measured response, and appears as a small
adjustment of the location of the origin of
IRT distributions. For simple Palya machines
effective and ineffective responses have the
same period, so that d0 5 0. If d is much
smaller than d0, then the Palya machine acts
like a refractory Poisson and generates a shift-
ed exponential. There are four free parame-
ters in the Palya machine and three in the
simple Palya machine.

The two-state Markov model proposed by
Shull et al. (2001) is charted in Figure 8 with
parameters that hold the animal in the first
state for a hiatus of mean duration 1/l1 5
t1/p1, and then move it to the response state
at which it emits target responses at a rate of
l2. After a response it quits the response state
with probability q. This entails that response

bouts have mean durations of 1/(ql2). In the
case q 5 1, the Shull machine reduces to a
Palya or Poisson machine with an exponential
refractory period, and generates IRT distri-
butions that are a mixture of two exponential
distributions. There are three free parame-
ters in the Shull machine.

Other models are readily constructed and
identified by their parameters: IRT(t1, p1, t2,
p2, q). IRT(t1, 1, t2, 1, 1) strictly alternates
two IRTs. IRT(t1, 1, t2, 1, q) generates a mix-
ture of two IRTs. For exponential CBMs, the
description reduces to IRTe(l1, l2, q).
IRTe(l1, l2, 1) gives a generalized gamma dis-
tribution (McGill & Gibbon, 1965) used to
describe the time course of adjunctive re-
sponding (Killeen, 1975).

Some models of IRTs, such as the variable-
rate model of McGill (1963) and Wing and
Kristofferson (1973) mentioned above, re-
quire that Figure 8 be rewired. In these mod-
els the emission of a response does not affect
the first CBM: The first CBM is free running,
so its output returns to restart it, as well as
start the second CBM. The first CBM is de-
terministic, so p1 5 1. The second CBM is
assumed to represent motor variance. The
model generates a sharply peaked LaPlace
distribution of IRTs. The tau-gamma model
of Church, Broadbent, and Gibbon (1992)
adds a third CBM to the McGill model; this
rounds off the peak of the LaPlace and fits a
variety of data.

A major characteristic of these machines is
the approximately geometric or exponential
decrease in the probability of emitting IRTs
as a function of their length. The marginal
probabilities (the probability of making a re-
sponse during the epoch t to t 1 D, given that
the animal has gotten to t) are constant over
time (a) for the exponential; (b) for the shift-
ed exponential after the refractory period;
(c) for the geometric model at multiples of
the period; (d) for the Shull model within
hiatus and within bouts; and (e) for the Palya
machine at multiples of the period but with
smear into the intervals between multiples.
The information embodied in these tails is
efficiently represented by the average re-
sponse rate. When the probability of respond-
ing within an observational epoch is small
(say, p , .25), all models make the same pre-
diction: Response rate is approximately pro-
portional to response probability.
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Fig. 9. The IRT distributions of 4 pigeons reinforced
on random-ratio schedules. Echoes of the fundamental
peck rate identify the generator as a Palya machine, with
fundamental period d between 0.3 and 0.4 s. Pigeon 19
showed minimal variability around this cycle, whereas Pi-
geon 62 showed substantial variability.

Hazard functions (Luce, 1986) are graphs
of these marginal probabilities as a function
of t, and thus characterize the distribution.
Anger’s (1956) IRTs per opportunity measure
is a hazard function. The hazard function of
the exponential is a horizontal line at a
height of l, which provides an approximation
of many data at the very coarse and coarse
levels of analysis. The hazard function of the
shifted exponential is a step up at d s from a
line at 0 to one at l. That of a Shull machine
is a step down from a line at l1 to one at l2.
An alternative representation, the log survival
function (Shull, 1991), is used to advantage
by Shull et al. (2001) and Conover, Fulton,
and Shizgal (2001).

Application of Models to Other Data

Pigeons on VR schedules. The data from Kil-
leen and Hall (2001, Experiment 2, Phase 1,
first 200 trials) may be analyzed in a manner
similar to that shown in Figure 7. Figure 9
shows the fine-grain (100-ms bins) IRT distri-
butions for 4 pigeons from Killeen and Hall.
The distributions are similar to those ob-
tained for VI schedules (cf. Figure 2). The
hint of periodic ripples in the 4th, 8th, and
possibly 12th bins would befit a mechanism
such as the Palya machine.

NEW EXPERIMENTS

Additional experiments were conducted to
establish the generality of the results just sum-
marized. Rats were used to assess species gen-
erality, and both lever pressing and instru-
mental licking were used to assess the impact
of response topography.

Experiment 1: Fixed-Ratio (FR)
Schedules

The procedures were modeled after those
of Bizo and Killeen (1997).

Subjects. Six male Sprague-Dawley rats (Rat-
tus norvegicus) with previous experimental his-
tories were maintained at 85% 6 10 g of their
ad libitum weights and were fed supplemen-
tal rat chow, if needed, at 6:00 p.m. Rats were
housed individually with free access to water
in a colony illuminated on a 12:12 hr light/
dark cycle with dusk at 6:30 p.m.

Apparatus. The experiment was conducted
in a Lehigh Valley Electronics chamber, mea-
suring 18 cm by 21 cm by 31 cm, enclosed in
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a sound-attenuating box. Access to 45-mg
food pellets was available in a magazine mea-
suring 2 cm by 4 cm by 5 cm, located 3 cm
from the floor. A Coulbourn Instruments re-
tractable lever was located 3 cm to the left of
the magazine and 3 cm from the floor. A
force of 0.22 N was required to activate a mi-
croswitch, registering an effective lever press.
A houselight, 12 cm from the floor and 9 cm
from the left wall, illuminated the chamber.
An IBM-compatible 286 computer controlled
the experiment. A ventilation fan yielded an
ambient noise level of approximately 71 dB.

Procedure. Sessions began with a 15-min ha-
bituation period in which the houselight was
illuminated and the lever was retracted. After
this period, the lever was extended into the
box and lever pressing was reinforced accord-
ing to an FR schedule with one 45-mg Noyes
pellet. Each reinforcer was followed by a 20-s
intertrial interval in which the lever was re-
tracted. Sessions were terminated following
100 pellet deliveries or 2 hr. Rats experienced
each of the following sequence of ratio values
for two sessions: 1, 2, 3, 4, 6, 8, 10, 12, 15, 20,
25, 30, 35, 40, 50, 60, 70, 80, 90, and 100.

Results. Response distributions were collect-
ed from the FR 80 condition. On this sched-
ule 79 sequential IRTs were available uninter-
rupted by reinforcement, and response rates
were high enough to provide many such se-
quences over the course of a single session.
The relative frequency distributions were
based on a fine-grain (100-ms) bin size. Fig-
ure 10 shows that distributions from 5 of the
rats were similar. The curve through the data
is a shifted exponential with median values of
d 5 0.05 s and l 5 5.6 s21. Although expo-
sure to the various schedules was intention-
ally brief, with only 36 sessions on various FR
schedules prior to data collection, this did
not compromise the ability to describe the re-
sulting IRT distributions with a simple model.

Notice that data are plotted at values less
than the refractory period d. Consider R1 in
the top left panel, with d 5 0.059 and a rel-
ative frequency of 0.16 at the abscissa 0.05.
This abscissa is the midpoint of a bin ranging
from 0 to 0.10; it therefore captures the first
41% of the IRT distribution. The rising limb
of the theoretical distribution is the relative
frequency of responses expected in a bin with
a lower limit of 0 and a midpoint given by its

abscissa, as the upper limit is continually in-
creased.

The shifted exponential provides a good
model at this and coarser levels of analyses
for all rats except R6, shown in the bottom
right panel. For R6 a more accurate and aes-
thetic model is provided by a simple Palya
machine with parameters p 5 .92, t 5 0.14 s,
and s 5 0.06 s, and no shift in the origin (q
5 0).

Experiment 2: Instrumental Licking

Subjects. Two naive male Sprague-Dawley
rats (Rattus norvegicus) were given varying
amounts of access to water at the end of each
day (ranging from 6 to 30 min). They were
housed individually with free access to food
in their home cages, and the colony was il-
luminated on a reversed 12:12 hr light/dark
cycle with dusk at 6:30 a.m.

Apparatus. The experiment was conducted
in a Coulbourn Instruments chamber mea-
suring 28 cm by 30 cm by 22 cm. A spout
connected to a lickometer was located 11 cm
from the left wall, 5 cm off the floor, and ex-
tended 1 cm from the wall. Two lights, each
measuring approximately 1 cm in diameter,
were centered 1 cm above the spout. A house-
light was centered in the box 1 cm from the
ceiling. An IBM-compatible 386 computer
controlled the experiment. The chamber was
enclosed in a sound-attenuating box suffused
with white noise and fan noise yielding an
ambient noise level of approximately 76 dB.

Procedure. Rats were trained to lick the
spout under an FR 1 schedule of water rein-
forcement. After two training sessions, the ex-
perimental sessions began with a 100-s habit-
uation period, after which a green light above
the spout signaled availability of water contin-
gent on 50 licks of the dry spout. The rats
had 20 min of access to water the evening
prior to experimentation. Reinforcement
consisted of the delivery of 0.04 ml of water
through the spout, signaled by changing the
light above the spout to red. Sessions were
terminated after the delivery of 100 reinforc-
ers. Twenty-six sessions were conducted, with
data taken from the last session. This selec-
tion was arbitrary, in that data sampled from
the prior 15 sessions were not noticeably dif-
ferent in character.

Results. Frequency distributions were con-
structed for rats’ licking in 20-ms bins. These
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Fig. 10. The IRT distributions of 6 rats reinforced with 45-mg food pellets for lever pressing on FR 80 schedules
in Experiment 1. The curves are shifted exponential distributions (the refractory Poisson process) with parameters
d (refractory period) and l (intrinsic rate of initiating responses).

are displayed in Figure 11. The distributions
were similar for the 2 rats and were combined
in a relative frequency display. The curve
through the data is the signature of a simple
Palya machine (q 5 0) with parameters p 5
.90, d 5 154 ms, and s 5 34 ms.

This concludes the analysis of response rate

in terms of IRT machines. Although different
operant responses may interact with rein-
forcement contingencies in different ways
(e.g., Hemmes, 1975), the basic patterning of
pecks, presses, and licks all exemplify the
same machinery (Figure 8), with different pa-
rameter settings characterizing animal or op-
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Fig. 11. The IRT distributions of 2 rats from Experi-
ment 2 licking a spout on FR 50 schedules for water. The
top panels show the frequency distributions of interlick
intervals from one session comprising 5,000 responses.
The bottom panel represents those data as relative fre-
quency distributions. The curve is the output of a simple
Palya machine.

erandum. In these machines, probability is
defined over the epoch t, and iterative sam-
pling of this epoch generates a response rate.
In a later section of this paper, the probability
of observing a response in an arbitrary ob-

servation epoch D will be predicted from
measured response rate.

RESPONSE LATENCY

Figure 12 shows the distributions of laten-
cies (the time to the first response on those
trials when a response occurred) calculated
from the pigeons’ data in Killeen and Hall
(2001, Experiment 1). These are plotted as a
function of time into the interval. There was
little variation in the means (in seconds) of
the distributions as a function of the baseline
rate of reinforcement (left panel); they were
(with standard deviations in parentheses)
0.62 (0.24), 0.64 (0.09), 0.74 (0.16), and 0.71
(0.06), respectively, for Intervals 120, 240,
480, and 960 s. The curves through the
points are generated by a Poisson process and
are called gamma or Erlang distributions.

The Poisson process and gamma or Erlang dis-
tributions. The best way to describe a Poisson
process is by reference to the bottom of Fig-
ure 13. It shows a CBM operating at a period
e sufficiently short that only the rate, l, is a
relevant parameter. When it fires it incre-
ments a counter. When the counter equals a
criterion n, the latent period terminates with
a response and reset of the counter. This is a
Poisson process. If the criterion is an integer,
the resulting distribution is called the Erlang.
The Erlang is a special case of the gamma
distribution, for which n can be a positive real
number. The distribution of the number of
counts registered over some period of time,
for many replications, is called a Poisson dis-
tribution. The distribution of times at which
a criterion count n is attained is called an Er-
lang (when n is an integer) or gamma (when
n is real) distribution. The Poisson process
may also be thought of as a progression
through n CBMs, each with the same rate pa-
rameter. If the distribution results from a pro-
gression through n CBMs, each of which has
a different rate parameter, the generalized
Erlang (or generalized gamma) distribution
results. McGill developed its use as a stochas-
tic latency mechanism (McGill, 1963; McGill
& Gibbon, 1965), and Killeen (1975) used it
to describe the distribution of adjunctive re-
sponding on periodic schedules. Although
the generalized gamma could fit these data,
it would require more parameters than the
simple Erlang. All of these distributions ap-
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Fig. 12. Latency distributions for Pigeon 50 in each baseline condition in Killeen and Hall’s (2001) Experiment
1; for each of the other pigeons in the VI 120-s baseline; and for the average over pigeons from the VI 480-s condition,
with standard deviation bars. The curves are gamma densities (Equation 1).
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Fig. 13. Two latency machines. The Gumbel or EV machine at the top involves a number of CBMs started in
unison. As soon as all have set, the machine triggers a response and exits. The gamma machine at the bottom,
described by Equation 1, was used to model the data shown in Figure 12. A CBM cycles until it has fired n times,
whereupon it emits a response and exits. If n 5 1, the machine generates geometric distributions; as the period e
decreases, these approach the exponential distribution. For the data analyzed here, approximately a dozen states
were necessary for both types of model.
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proximate the normal as n increases. The Er-
lang density is

n21 2(t/t)(t/t) e
f (t) 5 . (1)

t(n 2 1)

This model drives the curves through the
data in Figure 12. The mean (across subjects)
periods of the process for increasing VIs were
42, 34, 54, and 39 ms, with mean values for
n of 16, 18, 16, and 18, respectively.

If an additional, exponential, CBM is wired
in series with the Erlang machine, and the
number of cycles on the Erlang is large (n .
10), the resulting distribution is exponential
Gaussian (exgauss), which is commonly used
to model human reaction-time distributions.
The exgauss distribution provided a compa-
rable account of these data, but required a
third parameter (the rate of the last CBM) to
do so.

Extreme values. Another distribution that
provides an equivalent fit to these data is the
extreme value (EV) or Gumbel distribution
(Evans et al., 1993; Gumbel, 1958). This func-
tion was developed to describe the densities
of rare events, such as floods. It is most easily
explained in terms of CBMs (see top of Fig-
ure 13). Whereas the Erlang may arise from
a series of sequential transitions through
states (CBMs) with each transition having the
same rate constant, in the EV process a num-
ber of simultaneous operations of CBMs oc-
cur, each having the same rate constant. For
the largest EV process, the last CBM to fire
determines when the response occurs. It is as
though all of the relevant causal factors must
be satisfied before the response is emitted,
and each factor is represented as a Poisson
process. The largest EV is a model of the in-
teraction of necessary causal factors, the slow-
est of which on any trial sets the delay. The
smallest EV is a model for the interaction of
sufficient causal factors, any one of which
may occasion a response. (The smallest EV
process exits when the first CBM fires; it is
not used here.) Both have been used as mod-
els of behavioral processes (Killeen, 2001).

The Gumbel distribution is the limiting EV
distribution for a large number of compo-
nent CBMs. The EV density for n factors is

2(t/t) 2(t/t) n21f (t) 5 e (1 2 e ) . (2)

The distribution of variances accounted for
by this model is not significantly different

from that of the gamma density. In both cas-
es, if there is only one CBM (n 5 1), the la-
tency machine generates geometric-exponen-
tial distributions. In all cases, concatenated
CBMs (Figure 13) provide relevant machines.

Long-latency responses. We thought that poor-
ly motivated animals would miss responding
on a trial because a portion of the latency
distribution would be clipped by the end of
the trial. That is not what happened. Decreas-
ing probabilities of responding were caused
by a combination of minor shifts in the gam-
ma and larger increases in the probability
that the first response occurred later in the
trial, increases not predicted by the gamma.
For the data shown in Figure 12, the propor-
tion of latencies greater than 2 s increased as
the VI mean increased, with the average pro-
portions being 0.02, 0.03, 0.06, and 0.08 for
the increasing VIs. This is predicted by nei-
ther the EV nor the gamma distributions, for
which the probability of a response after 2 s
is very close to 0. For representative param-
eters, 99.9% of the responses should have
been emitted by t 5 2 s into the trial. This
calculation suggests that there are actually
two processes governing the initial response
on a trial: an almost immediate, relatively in-
variant, reflex-like response, and a desultory
delayed response that is more closely related
to the probability of reinforcement.

Mixtures. It is thus plausible that a mixture
of latency distributions underlie these data: a
gamma-like process that generates the major-
ity of first responses and whose parameters
are relatively invariant, plus another distri-
bution of responses that are evoked with a
constant probability during the course of the
trial. It is this latter distribution that becomes
dominant at lower reinforcement probabili-
ties and gets truncated by the end of the trial.

This distinction between two classes of re-
sponses has precedent (Hearst, 1975; Kimble,
1967). Baron and Herpolsheimer (1999)
found that increases in FR requirements in-
creased the skew of postreinforcement-pause
distributions rather than shifting the entire
distribution. The presence of long-latency re-
sponses in human eyelid conditioning has ac-
tually been taken as evidence of ‘‘voluntary’’
instrumental responding, and was used to
eliminate subjects from the experiments
(Coleman, 1985; Coleman & Webster, 1988).
The distinction between these two types of re-
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Fig. 14. Latency distributions averaged across rats at FR 10, FR 20, FR 40, and FR 100 from Experiment 1. The
dashed curves are gamma densities (Equation 1); the solid curves are EV densities (Equation 2).

sponse resonates with Skinner’s (1938) asser-
tion that, in trials experiments, responses un-
der control of the discriminative stimulus are
‘‘pseudo-reflexive.’’

In the previous section, autocorrelational
analyses revealed that response run rates con-
sist of bouts of higher likelihood of respond-
ing (of period d) mixed with bouts of paus-
ing. Shull et al. (2001) also identified a
second, slower process in IRT distributions
collected in free-operant experiments. The
present analysis of latencies suggests that trial
performances as a whole consist of mixtures
of trials of high-probability quick responses to
the onset of the conditional stimulus plus tri-
als of late or nonresponding.

Rats on FR schedules (from Experiment 1). Fig-
ure 14 shows latency distributions for rats le-
ver pressing on FR 10, FR 20, FR 40, and FR
100 schedules, averaged across rats. The gam-
ma and EV densities are fit to the data, and
show an equivalent ability to imitate them.
With increasing size of the FR, the periods
(1/l) of the gamma were 0.03, 0.06, 0.10,

and 0.17 s and periods of the EV were 0.09,
0.13, 0.19, and 0.27 s. The number of pro-
cesses (n) were 8, 7, 5, and 3 for the gamma
and 15, 10, 6, and 4 for the EV. The mean
and variance of the distributions (n/l and
n/l2 for the gamma) increase with increases
in schedule value. Figure 14 shows that laten-
cy data from rats on ratio schedules may be
characterized with the same arrangement of
CBMs as latency data from pigeons on inter-
val schedules.

Summary. The latency of the first response
of the rats and pigeons in these experiments
is well described as sequenced Poisson pro-
cesses yielding gamma (Erlang) distributions.
An equivalent description is provided by the
EV (Gumbel) distribution. In Experiment 1
the mean and variance of the distributions
generated by pigeons increased only slightly
as probability of reinforcement decreased
from 8% (VI 120) to 1% (VI 960). The de-
creasing probability of responding on a trial
was greater than could be accounted for by
those shifts in the distribution; trials without
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a response are not simply trials with a latency
drawn from the right tail of the latency dis-
tribution. This leads to further inquiry con-
cerning the variables of which responding on
a trial is a function.

THE PROBABILITY OF
RESPONDING DURING

A TRIAL

Figure 1 (left column) showed that the
probability of responding decreased slightly
in the VI 960-s condition in Experiment 1,
and decreased more significantly with trials of
extinction. Such was the case in the other ex-
periments. Is the probability of responding
on a trial constant from one trial to the next,
or does it change as a function of the number
of trials since the last response? If the prob-
ability that a trial contains at least one re-
sponse (p) is constant, then the probability
of two trials in a row with a response is p 3
p, and the probability of three in a row is p3.
The probability of one trial without a re-
sponse and two with a response is (1 2 p)p2,
and so on. This is the simplest Markov model.
How well does the assumption of indepen-
dence characterize these data? The last five
sessions of the VI 960-s condition were ana-
lyzed to determine the probability of occur-
rence of each of the possible patterns of re-
sponding on all triplets of trials, and on
sequences of up to seven trials in a row con-
taining responses. There were 998 triplets for
each of the 4 pigeons. The assumption of
constant probability accounted for an average
of only 83% of the variance in the data, rang-
ing from 70% to 96% for the different pi-
geons.

There were systematic deviations from the
pattern predicted by independence, as these
middling coefficients of determination sug-
gest: The probability of three trials in a row
with responses was higher than predicted, as
was the probability of three trials in a row
without responses. A better model is invited.

The next-simplest Markov model that
might account for the data posits that the pat-
tern of probabilities resulted from a mixture
of two states: When animals were in a re-
sponse mode, they responded with high
probability; but sometimes they went into ep-
isodes of not responding, perhaps simply
turning away from the key. A two-state Mar-

kov process, in which the probability of a re-
sponse given a response on the previous trial
is .96 and the probability of a response given
no previous response is .37, accounted for
99% of the variance in the average probabil-
ities of these sequences (see the Appendix for
the calculations, Figure 15 for the state dia-
gram, and Figure 16 for the predictions).
These two states may correspond to ones in
Timberlake’s behavioral system (Shettle-
worth, 1994; Silva, Timberlake, & Koehler,
1996; Timberlake, 1994), to paying attention
or not, or simply to facing the key or not.
They may correspond to B0, the behavior re-
inforced by R0 in Herrnstein’s (1970) hyper-
bolic law of strength. They correspond to
Shull et al.’s (2001) two-state Markov model,
with responses occurring on a trial if the an-
imal happened to be in a visit state when the
trial started and not otherwise. They may cor-
respond to the short- and long-latency distri-
butions described above.

Summary. The probability of responding on
a trial depends on whether the subjects had
responded on the previous trial, as though
they were in modes, or states, of responding
or not responding. The average sequences of
responding were well predicted by the as-
sumption that if they had not responded on
a trial, there was only a 37% probability that
they would respond on the next trial; if they
had responded on a trial, there was a 96%
probability that they would continue to do so.
As was the case with running rates in which
there were bouts of responding and hiatus
from it, and as was the case with latencies in
which there was a mixture of two distribu-
tions, it requires a two-state Markov model to
adequately describe the probability of re-
sponding on a trial.

Each of the CBMs is characterized by two
parameters, probability (p) and period (t; or
1/l for the exponential models). In the case
of the probability of responding from one tri-
al to the next, it is trial onset, not time, that
queries the probability gate. The machines
are differentially called into play by the con-
tingencies of reinforcement and contingen-
cies of measurement. In the next section the
general relations among these machines,
their parameters, and the principal depen-
dent variable in our field, response rate, are
determined.
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Fig. 15. The probability of responding on any trial depends on whether the organism is in a response state. This
Markov model describes the data from Experiment 1 of Killeen and Hall (2001). The base probability of responding
on a trial is .91; if the animal responds, then on the next trial the probability of a response increases to .96. If the
animal does not respond, the probability of a response on the next trial is .37.

MAPPING RATE TO
PROBABILITY

The refractory Poisson machine falls be-
tween the simple exponential model and the
Palya machine in complexity, accuracy, and
parsimony. It, and the shifted exponential
IRT distribution that characterizes it, provide
the basis for a functional relation between
rate and probability. Recall that for the re-
fractory Poisson machine each response re-
quires d seconds for its emission; after this
refractory period there is a constant proba-
bility of emitting a response in subsequent
epochs. The hazard function of this machine
is 0 for d seconds, and then abruptly rises to
a horizontal line at a level of l 5 p/d, indi-
cating a rate of response initiation of l. Anal-
yses will start with the simplest limiting con-
ditions of this model and build to the
complete model as necessary for high prob-
abilities of responding.

Consider first the case in which measured

response rate (b) is far below its ceiling; then
the probability of observing a response in
that epoch is approximately proportional to
response rate:

p ø Db 0 # Db , 0.25. (3a)

Conversely, within the same range b ø p/D.
At higher response rates the probability

falls below Db, requiring the integral of the
exponential IRT density:

p ø 1 2 e2bD. (3b)

Equation 3b is the area under an exponential
decay function from 0 to D. Conversely, b 5
2ln(1 2 p)/D.

Equation 3b applies to the complete range
of probabilities only if the refractory period
after a response (d) is negligible. It reduces
to Equation 3a for small Db. When d is non-
negligible, then as response rates approach
their maximum (bmax 5 1/d), the time avail-
able for emitting a response is increasingly
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Fig. 16. The probabilities of responding on various sequences of trials are plotted against those given by the
Markov model shown in Figure 15. The data are the averages over 4 pigeons from the last 1,000 trials in the VI 960-
s condition of Experiment 1 of Killeen and Hall (2001). The highest probabilities correspond to 1, 2, 3, . . ., 7 trials
in a row containing at least one response. The inset panel magnifies the lower decant and contains all the singlets,
doublets, triplets, and quadruplets of sequences that involve at least one trial without a response.

constricted by the time required for the com-
pletion of each response. If each response re-
quires d 5 0.25 s, an animal responding at a
rate of 2 per second has only 1 2 2 3 0.25
5 0.5 s available out of every second for ini-
tiating a response. In this case Equation 3b
becomes

p 5 1 2 e2lD, (3c)

with the rate of initiating responses, l, esti-
mated as (Cox & Miller, 1965)

l 5 b/(1 2 db), b , bmax. (3d)

As the refractory period (d) or response rate
(b) decreases, this converges on the simpler

exponential map (Equation 3b), which also
suffices for brief observation intervals D. For
sufficiently low response rates and short ep-
ochs, Equation 3c reduces to Equation 3a.
These maps are shown in Figure 17 for D 5
1 s, for various values of d. The converse of
Equation 3d is

b 5 l/(1 1 ld), (3e)

which predicts observed rates from instanta-
neous rate and dead time. This is equivalent
to Shull et al.’s (2001) Equation 1, with b 5
V9, l 5 V, and d 5 NW, the time occupied by
a bout.

Equation 3e is sometimes called a hyper-
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Fig. 17. The maps between response rate and re-
sponse probability generated by Equation 3a (the straight
line from 0,0 to 1,1); Equation 3b (circles); and Equation
3c with different values of refractory period d, measured
in seconds. Measured response rate b is given in respons-
es per second.

bolic function. If l is proportional to rate of
reinforcement (l 5 aR), Equation 3e be-
comes a fundamental equation in the math-
ematical principles of reinforcement (Kil-
leen, 1994). The converse of the complete
probability model for rate is b 5 1/[d 2
D/ln(1 2 p)].

Figure 18 gives the map between the prob-
ability of a response within a D-s epoch for
each pigeon in Experiment 1 of Killeen and
Hall (2001) plotted against response rate.
The data are from the first three sessions of
extinction from the VI 120-s schedule, using
only trials with at least one response. From
these approximately 1,000 trials, a random
process in the computer selected a trial, and
the running rate on that trial was calculated.
Another random process selected an obser-
vation epoch of D s randomly from the por-
tion of that trial after the latency. The pres-
ence or absence of a response in that epoch
was registered. This process continued for
1,000 samples with replacement. The proba-
bility of a response was calculated as the pro-
portion of observations from trials with a run-
ning rate of b 6 0.1 s21 that contained at least
one response. This was plotted against the
running rate b. The curves are from Equation
3c, with d fixed at 0.29, 0.20, 0.27, and 0.10 s
for Pigeons 50, 93, 94, and 95, respectively.

The same values were used for all observation
epochs D.

Notice in Figure 18 that a straight line from
the origin to (1, 1) will account for a sizable
amount of the variance in the data at low re-
sponse rates. That is the approximate predic-
tion of all of these models: At low response
rates, p ø bD. It validates Skinner’s sense that
response rate is important because it permits
an estimate of response probability: ‘‘Our ba-
sic datum is the rate at which such a response
is emitted. . . . Such a datum is closely asso-
ciated with the notion of probability of ac-
tion’’ (Ferster & Skinner, 1957/1997, p. 7),
and ‘‘Perhaps most important of all, frequen-
cy of response is a valuable datum just be-
cause it provides a substantial basis for the
concept of probability of response—a con-
cept toward which a science of behavior
seems to have been groping for many de-
cades’’ (Skinner, 1961, p. 74).

Summary. The shifted exponential distri-
bution corresponding to the refractory Pois-
son process provides a good description of
the data and approximates the more precise
but less wieldy Palya model. The key param-
eter of the Poisson is its intensity, or instan-
taneous rate, l. When the refractory period
after a response (d) is small, response rate
measured in the conventional manner (b) is
a good estimate of l. When response rates
approach their ceiling (1/d), however, the hy-
perbolic relation between measured rate (b)
and instantaneous rate (l) becomes salient,
as shown in Equation 3e.

There is a close relation between probabil-
ity and rate, but it is not one of equivalence.
The probability of emission of a response in
any epoch is a concave function of the instan-
taneous response rate, approaching 1.0 as
rates approach their ceiling (Figures 17
through 19). At low response rates (bD K 1),
the probability of a response in any epoch of
length D is p ø bD (Equation 3a). At higher
rates, p 5 1 2 e2lD (Equation 3b), with l ø
b. At still higher rates, account must be taken
of the responses that would have been emit-
ted but fell into the refractory period (Cox
& Miller, 1965). This is accomplished by
Equation 3c. The refractory Poisson process
embodied by Equation 3e is consistent with a
hyperbolic relation between response
strength and response rate posited by various
theories of motivation (e.g., Killeen, 1994).
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Fig. 18. The probability of making a response during a D-second epoch as a function of running rate on each
trial for the first three extinction sessions after the VI 120-s condition of Experiment 1 of Killeen and Hall (2001)
for each pigeon. The curves are from Equation 3c.

Global Response Probability
The probability of seeing a response dur-

ing a brief epoch D randomly sampled from
a session may be found by combining the

probability of choosing a trial with a response
(p), the probability of selecting the run state
of that trial (1 2 L/T; where L is latency and
T trial duration), and the probability of not
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Fig. 19. The probability of making a response during a D-second epoch as a function of overall response rates
on each trial. The data are from the same sessions as those shown in Figure 18. The curves are from Equation 3c,
with b now signifying overall response rate, and with d fixed at 0.29, 0.20, 0.27, and 0.10 for the top, second, third,
and fourth rows, respectively (the same values used in Figure 18).
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falling into an interresponse interval (Equa-
tion 3c):

P 5 p(1 2 L/T)(1 2 e2lD). (4)

Equation 4 combines the three key factors:
trial probability, latency, and the rate-to-prob-
ability map. It is definitive, but puts perhaps
too fine a point on the analyses, requiring
more information than necessary for a good
description of the present data. This is be-
cause the three factors in Equation 4 are usu-
ally positively correlated (Killeen & Hall,
2001). We may shift the burden of the first
two terms in Equation 4 onto the third, Equa-
tion 3c and 3d. With b now representing over-
all response rate in those equations (i.e., the
number of responses divided by time avail-
able for responding: B), it provides a map be-
tween overall response rate and global prob-
ability of responding. This is shown in Figure
19, in which the probability of encountering
a response in 1,000 random samples of D-s
epochs over all parts of all the trials of the
first three sessions of extinction from Exper-
iment 1 of Killeen and Hall (2001), VI 120 s,
are predicted from the overall response rate
on those trials. The same analytic procedure
and the same values of refractory period d
were used as in Figure 18, with all trials in a
session sampled. It is manifest that global re-
sponse rates both capture the contributions
of the static temporal properties (Equation 4)
and permit prediction of global response
probabilities (Figure 19). Because rates often
vary within the course of a session due to ex-
tinction, spontaneous recovery, satiation, and
so forth, the success of such a rate-to-proba-
bility map over these heterogeneous condi-
tions is remarkable.

GENERAL DISCUSSION

Levels of Analysis

Many different levels of descriptions of be-
havior—from qualitative through molar to
molecular—are possible. The current article
provides several levels of analysis, offering
characterizations at one level that are then
improved at the next. The cost of refinement
is paid in parameters and complexity, which
eventually frustrate intuition.

Overall response rates comprise three com-
ponents, based on conditional probabilities:

1. The probability of responding on any se-
quence of trials is well predicted by the
probability of responding conditional on the
presence of a response on the previous trial
(Figure 15).

2. The probability of the first response giv-
en trial onset is well described by gamma and
EV distributions (Figures 12 through 14). In
addition to the responses falling within these
distributions, there was a collection of late re-
sponses that accounted for about 5% of the
trial initiations under baseline conditions and
an increasing percentage through extinction.

3. The probability of a response given a re-
sponse in the previous D seconds is given by
the IRT distribution. These distributions
(e.g., Figure 11) were most precisely charac-
terized as the output from a Palya machine
in which pulses from a pacemaker with a var-
iable period are registered probabilistically.
The refractory Poisson emitter provides a
simpler model that gives rise to a shifted ex-
ponential distribution of IRTs (e.g., Figure 10
and the top panel of Figure 7), and is consis-
tent with the hyperbolic law of response
strength (de Villiers & Herrnstein, 1976).

These variables may be combined into
overall response rate or probability (Equation
4). Depending on experimental context,
each will weigh more or less heavily in their
contribution to response rate and in the in-
formation they provide concerning response
strength. As is the case for any summary sta-
tistic, details of the particulars are sacrificed
to the generality and simplicity of an omnibus
measure. Overall rate both correlates highly
with the latent dimension strength (Killeen &
Hall, 2001) and predicts probability of re-
sponding within any epoch of time (Figure
19). It does so even though it is a gloss over
nonhomogenous epochs—trials without a re-
sponse, latent periods, refractory periods,
and bouts of responding at high rates.

Probability is not rate, but it arises as the
result of sampling the output of an emitter
that operates some proportion of the time
(during bouts); when operating, it does so at
some rate (l), and its output is realized as a
measurable response some proportion of the
time (p). The summary measure of response
rate provides an excellent description of the
state of many of the static properties of the
response, and possesses both internal and ex-
ternal validity. Response rate is not an inter-



155PROBABILITY MACHINES

val scale of strength; due to physical limita-
tions on rate, it is concave, with increases at
the high end requiring stronger motivational
operations than equal increases at the low
end. Instantaneous response rate l, which
corrects response rate for this constraint, may
be such an interval scale, but establishing that
requires a network of relations among oper-
ations, measurements, and outcomes that has
yet to be accomplished.

Probability Machines

The probability of emitting a response
within D seconds after the previous response
is p. This is the variable that controls the
shape of the exponential tail of the IRT dis-
tribution, which has a rate parameter l 5
2ln(1 2 p)/D, which is approximately equal
to p/D. Response rates give us information
about p, the probability of emitting a re-
sponse. At low rates p is proportional to re-
sponse rate, but at higher rates it bends be-
neath its unit ceiling. The exponential
integral (Figure 17) describes that curvature.
When an observational epoch is an arbitrary
temporal interval (say, D 5 1 s) drawn ran-
domly from the trials and contingent only on
the presence of a lit center key, the global
probability of a response is well predicted
from overall response rates, as given by Equa-
tion 3c and shown in Figure 18. Further anal-
ysis based on categorizing the data according
to certain conditions reveals finer structures.
The conditionals—the givens—that were ef-
fective in the present analysis were the pres-
ence of a response on the previous trial, the
trial onset, the occurrence of a prior re-
sponse on that trial, and the lapse of a re-
fractory period. For Palya machines, the time
since the last response was also informative.
The stochastic processes associated with these
levels are given by the associated probability
machines and their flowcharts.

The final proof of successful analysis is a
synthesis of the components into the whole
(Teitelbaum & Pellis, 1992). Figure 20 shows
how the various stochastic machines may be
concatenated to emulate the behavior of or-
ganisms.

Behavior as Mixtures of States

Timberlake (e.g., 1999, 2000) has regularly
reminded us that the free operant is at less
liberty than its name claims. Animals natural-

ly engage in a portfolio of behavior, describ-
able with an ethogram, that often over-
whelms analyses. The majority of articles in
this journal describe aspects of a single op-
erant under the control of a single kind of
reinforcer. A second response key is some-
times employed to give the animal a second
route to the same goal. Sometimes alternate
kinds of behavior are recorded by transducers
that may still leave too much information
(e.g., Pear, 1985) or too little (e.g., Killeen &
Bizo, 1998) for the analyst to formulate.
Sometimes the alternate behavior is merely
inferred by gaps in the target responding
(Herrnstein, 1970; Rachlin, Battalio, Kagel, &
Green, 1981; Shull et al., 2001). When ex-
plicit alternative responses are identified, the
analysis often becomes rich and surprising:
The statistics of alternation between bouts of
responses may indicate stress due to parasit-
ism or pregnancy, as revealed by their fractal
dimension (Alados, Escos, & Emlen, 1996);
the motivational control of elements of a se-
quence may vary as a function of their loca-
tion in the sequence (Balleine, Garner, Gon-
zalez, & Dickinson, 1995); patterns of
responding may be embedded in larger pat-
terns in a self-similar structure (Cole, 1995);
and the relative frequency of independent re-
sponses may be distributed as an exponential
function of their activation energy (Hanson,
1991).

Multiplication of essentials. Understanding
the state of an organism is key to understand-
ing how and why it behaves (Timberlake &
Silva, 1994). The state of the organism has too
often been a generic reference to organismic
variables that are not understood—a euphe-
mism for error variance. But it can have a
more precise meaning, as the principal com-
ponent of a constellation of variables whose
specification increases our ability to predict
and control behavior. It is what is to be given
in a conditional statement. If an animal re-
sponded on the previous trial it is in a differ-
ent state than if it had not (Figure 15)—it
behaves in a predictably different manner.
Immediately after one response another re-
sponse is impossible; refractory is the name of
a state whose specification increases our abil-
ity to predict the absence of responses.
Strength is the measure of a state that binds
together our key dependent variables. Where-
as such essential constructs should not be
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Fig. 20. The probability, latency, and IRT machines are assembled by a synthesizer, which generates a stream of
responses emulating those of the subjects in these experiments.

multiplied beyond their necessity, when nec-
essary they should not be omitted.

State transition diagrams such as the be-
havior systems theory diagrams of Timber-
lake; the Markov models of Myerson and
Hale (1988), Gibbon (1995), and Shull et al.
(2001), and probability machines such as
those displayed here, are steps toward non-
gratuitous characterization of states. The bio-
metrics literature provides more technical
treatments of sophisticated state–space mod-
els (e.g., Mangel & Clark, 1988); Staddon
(1993) makes a case for their application in
behavior analysis. The transition between
such states occurs stochastically when certain
conditions are met. Those conditions may be

easily identified, or they may be obscure. If
the transition always occurs given x, we speak
of cause ; if it never occurs, we speak of inhi-
bition; if it sometimes occurs, we speak of prob-
ability. As a measure of strength, probability
is a fundamental variable in the analysis of
behavior.

Probability Versus Rate

Probability machines provide a character-
ization that is the dual of response rate, much
as nuclear particles are duals of waves. Which
is a better measure, probability or rate? This
depends on the operations available for their
measurement.

Probabilities are measured by repeatedly
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sampling the behavior of a system over ex-
perimentally defined epochs. The epoch
should be brief enough so that the response
will not occur many times within it, or the
measure saturates; uniform probabilities of 0
or 1 are uninformative. The information
transmitted by an observation is maximum
when epochs are chosen so that all outcomes
of interest are equally likely to occur within
it. If the outcomes are binary, such as pres-
ence or absence of a response, this is 50%. At
that probability, solution of Equation 3b pre-
dicts a response rate b ø 0.7/D, assuming no
refractory period (d 5 0). For d 5 0.25 s and
an observation epoch of 1 s, rate decreases to
b ø 0.6/s. The predictions in Figures 18 and
19 provide a map between rate and probabil-
ity that can be traveled in either direction.

Probability assessments are often meta-
phorical extensions of the sampling opera-
tion that defines objective probabilities. Sub-
jective probabilities are based on aggregation
of real or imagined events into a population.
A number between 0 and 1 is then assigned
as a measure of confidence in a particular
outcome, based on the number of relevant
instances in the imagined population, the la-
tency or difficulty in imagining relevant in-
stances, and so on. Subjective probabilities
are useful in everyday life; but because the
construction of the relevant population and
the sampling from it are not verifiable or uni-
form across individuals (Keren & Teigen,
2001), the resulting estimates reflect the his-
tory of the individual as much as objective
probabilities.

Response rates are measured by summing
responses and dividing by elapsed time. Rates
provide an exhaustive sampling without re-
placement of the interval of interest, and are
thus the most efficient possible estimators of
the corresponding probability. Measured re-
sponse rate (b) is not the same as the rate of
initiating responses (l), just as IRTs are not
the same as the time between responses. The
difference is d. The average time between the
start of one response and the start of the
next, 1/b, equals the average time between
responses, 1/l, plus the response duration d:
1/b 5 1/l 1 d. Take the reciprocal to derive
the relation between the two rates b and l
given by Equations 3d and 3e: b 5 l/(1 1
ld). This is sometimes called a hyperbolic re-
lation. If the rate of initiating responses is

proportional to the rate of reinforcement (l
5 aR), then b 5 (R/d)/(R 1 R0), where R0
5 1/ad. The fundamental hyperbolic relation
between reinforcement rate and response
rate (Herrnstein, 1974, 1979) may thus derive
its shape from this simple fact of measure-
ment.

In sum, probabilities tell us the relative fre-
quency with which responses of a similar na-
ture will fall within an observation epoch.
The reciprocal of a probability tells us the
number of epochs that we must expect to
sample before seeing the event. Probabilities
are useful for observations that form a natu-
ral epoch—trials or other occasions initiated
by a discriminative stimulus—and for brief
epochs from a stream of recurrent responses.
When available, rates provide an efficient
measure of response strength, which predicts
other variables such as response latency and
probability (Equations 3 and 4). Observation-
al conveniences and efficiencies determine
the best way to measure strength.

Summary and Conclusions

Behavior at large is a constellation of re-
sponse states, within which different target re-
sponses occur with some probability. The on-
set of a salient stimulus is often a good
predictor of a new state, and time since the
onset of the state is often a good predictor of
the probability of a response. If the response
does not cause the animal to exit the state,
responding may continue at a characteristic
rate. States and transitions between them are
fundamental units for the analysis of behav-
ior, because they define homogenous epochs
for observation. The three-term contingency
of discriminative stimulus, response, and re-
inforcer is a formula for describing behavior-
al states, and thus is a verbal allusion to Fig-
ure 20. Contingencies of reinforcement
specify the rules by which the experimenter
or nature shapes organisms to transit between
states. Parsing behavior into states increases
the predictability of behavior. Accurate state
diagrams epitomize our understanding of be-
havior. It is within this context that rate and
probability provide dual descriptions of re-
sponse strength.

Both the latency of the first response in a
state and the ensuing interresponse times
may be analyzed with probability machines, a
common element of which is the clocked Ber-
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noulli module (CBM). This device adds time
to Markov models (Figure 4). The instanta-
neous rate parameter of CBMs, l, specifies
the rate of state transition. In IRT machines
this is transition from a nonresponse to a re-
sponse. Measured response rates may be less
than l due to refractory periods (d), or to
probabilistic disengagement and reengage-
ment in the response bouts—that is, transi-
tion among states with different parameters.
A general model of IRT machines is shown
in Figure 8, and examples of latency ma-
chines appear in Figure 13.

Response rate is an efficient but biased es-
timator of the instantaneous rate, l: It must
be corrected for the physical limits on rate
due to refractory periods. Response rate is
also a good estimator of probability, but must
be corrected for the nonlinear relation be-
tween the probability of responding during
an epoch and the rate during the state from
which that epoch is drawn. These corrections
are provided in Equation 3 and are graphed
in Figures 17 through 19. Killeen and Hall
(2001) showed that response probability, la-
tency, and rate were highly correlated with
one another and with a factor called strength;
and that overall response rate is an excellent
predictor of strength. This paper provides a
common modeling language based on units
of probability (p and p) and time (1/l and
t) for those dependent variables. Future re-
search may show that operations that affect
strength modify those units in simple and
predictable ways. It is our hypothesis that the
rate of initiating responses, l, will prove to be
the best single index of strength.
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APPENDIX

Extreme Value (Gumbel) Distributions

The EV distribution is the limiting distri-
bution of the largest observation of a set of
independent identical exponential variates.
Its distribution function is

F(t) 5 exp{2exp[2(t 2 m)/s]}. (A1)

Changing the sign of t gives the distribution
of the smallest observation of the set. The
density is the derivative of the distribution
function, which in this case is simply f (t) 5
exp[2(t 2 m)/s]/s * F(t). This is the asymp-
totic distribution for a large n. The probabil-

ities may also be calculated directly, as given
by Equation 2 in the text.

Two-State Markov Model for
Probability of Responding on
Any Trial

Call the base probability of making a re-
sponse on any trial p. In the two-state Markov
model the probability of making a response
on a trial given that the animal had just re-
sponded on the previous trial, p(1z1), is p; the
probability of a response given that the ani-
mal had not responded on the previous trial,
p(1z0), is q. These are displayed in Figure 15.
The complementary probabilities are 1 2 p
for a nonresponse given a response [p(0z1)]
and 1 2 q for a nonresponse given a nonre-
sponse [p(0z0)]. The long-run probability of
observing a response on a trial when it is not
known whether a response occurred on the
previous trial is p, and this is related to p and
q as p 5 q/(1 1 q 2 p) (see, e.g., Ross, 1997,
p. 172 ff.). The probability of a string such as
111, p(111), is then ppp; p(101) 5 p(1 2 p)q;
p(110) 5 pp(1 2 p); p(011) 5 (1 2 p)qp; and
so on. Two degrees of freedom are utilized
to set the parameters: p was set equal to the
obtained base rate (0.912), and p was in-
ferred from the series 11111 [viz., as (0.787/
p)1/4]. Figure 16 plots the predictions of this
Markov model against the data.


